An efficient numerical algorithm for computing densely distributed positive interior transmission eigenvalues

نویسندگان

  • Tiexiang Li
  • Tsung-Ming Huang
  • Wen-Wei Lin
  • Jenn-Nan Wang
چکیده

We propose an efficient eigensolver for computing densely distributed spectrum of the two-dimensional transmission eigenvalue problem (TEP) which is derived from Maxwell’s equations with Tellegen media and the transverse magnetic mode. The discretized governing equations by the standard piecewise linear finite element method give rise to a large-scale quadratic eigenvalue problem (QEP). Our numerical simulation shows that half of the positive eigenvalues of the QEP are densely distributed in some interval near the origin. The quadratic Jacobi-Davidson method with a so-called non-equivalence deflation technique is proposed to compute the dense spectrum of the QEP. Extensive numerical simulations show that our proposed method makes the convergence efficiently even it needs to compute more than 5000 desired eigenpairs. Numerical results also illustrate that the computed eigenvalue curves can be approximated by the nonlinear functions which can be applied to estimate the denseness of the eigenvalues for the TEP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

An efficient numerical algorithm for computing the positive dense spectrum of the transmission eigenvalue problem with complex media

We study a robust and efficient eigensolver for computing the positive dense spectrum of the two-dimensional transmission eigenvalue problem (TEP) which is derived from the Maxwell’s equation with complex media in pseudo-chiral model and the transverse magnetic mode. The discretized governing equations by the Nédélec edge element result in a large-scale quadratic eigenvalue problem (QEP). We es...

متن کامل

A Filtered Lanczos Procedure for Extreme and Interior Eigenvalue Problems

When combined with Krylov projection methods, polynomial filtering can provide a powerful method for extracting extreme or interior eigenvalues of large sparse matrices. This general approach can be quite efficient in the situation when a large number of eigenvalues is sought. However, its competitiveness depends critically on a good implementation. This paper presents a technique based on such...

متن کامل

Determining Transmission Eigenvalues of Anisotropic Inhomogeneous Media from Far Field Data

We characterize interior transmission eigenvalues of penetrable anisotropic acoustic scattering objects by a technique known as inside-outside duality. This method has recently been identified to be able to link interior eigenvalues of the penetrable scatterer with the behavior of the eigenvalues of the far field operator for the corresponding exterior time-harmonic scattering problem. A basic ...

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016